Search
× Search

hot items

CIFAR Research Used by National Weather Service to Better Predict Flooding

  • 17 June 2013
CIFAR Research Used by National Weather Service to Better Predict Flooding

Recent Yukon River flooding underscores the importance of accurately predicting snowmelt and river ice breakup in Alaska. Residents of Galena were evacuated with little warning as their community of 400 was inundated with water and ice on Memorial Day weekend. Cooperative Institute for Alaska Research (CIFAR) researchers Katrina Bennett and Jessica Cherry are working with the National Weather Service’s Alaska-Pacific River Forecast Center (APRFC) to improve the accuracy of snowmelt processes in the models used by the APRFC. The High Latitude Proving Ground, an effort by National Oceanic and Atmospheric Administration (NOAA)-National Environmental Satellite, Data and Information Service (NESDIS), supports this project to develop and implement next-generation remote sensing products into weather and river forecast offices’ modeling protocol.

Background:  Bennett, a PhD student at the University of Alaska Fairbanks, is working with the APRFC to update snow conditions in the temperature-index snow accumulation and melt model SNOW-17 using snow cover data from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery. Currently, snow cover in the model is generated using a sparse observational network and algorithms that calculate mean areal temperature and precipitation. This and other forms of data assimilation with remote sensing products are one way to update information in our modeling systems. Cherry and other members of her research team are trying to balance progress in assimilation and observational data management with a move toward more physically based land surface and systems models.    

Significance:  As hydro-climate systems regimes shift and extreme events become more frequent, it’s increasingly important that model predictions simulate the Earth system response accurately. In the Far North, spring snowmelt is the most dramatic hydrologic event of the year, and the mostly likely time for flooding to occur. Given Alaska’s vast territory and sparse ground-based observing networks, remote sensing is an obvious place to turn to improve the prediction of spring snowmelt and river ice breakup. CIFAR’s work relates to NOAA’s Climate Adaptation and Mitigation goal.

Contact: Dr. Jessica Cherry (jcherry@iarc.uaf.edu) 

Print
Categories: Hot Items
Tags:

Enter Title

Cooperative Institutes

About Us

The NOAA Cooperative Institutes are academic and non-profit research institutions that demonstrate the highest level of performance and conduct research that supports NOAA's Mission Goals and Strategic Plan. 

Back To Top